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Abstract. The magnetic and electric hyperfine interaction frequencies of 197mHg, 191Pt, 183Os, and 183Re
in Co(hcp) were determined for parallel and perpendicular orientations of the magnetization relative to
the c axis. Single-crystal samples were used, and the techniques of nuclear magnetic resonance on oriented
nuclei and modulated adiabatic fast passage on oriented nuclei were applied. In addition, the nuclear spin-
lattice relaxation constants in Co(hcp) were determined for 188Ir, 183Os, and 183Re. The descriptions of
the magnetization behaviour and the anisotropy of the hyperfine interaction were tested in detail for 191Pt.
The available data on the hyperfine interaction of the 5d elements in Co(hcp) are compiled. The use of
these data to obtain information on the electronic structure of these systems, and in particular on the
orbital part of the magnetism, is discussed.

PACS. 76.60.Jx Effects of internal magnetic fields – 75.50.Cc Ferromagnetic metals and alloys – 76.80.+y
Mössbauer effect; other γ-ray spectroscopy

1 Introduction

The hyperfine fields at impurities in Fe, Co, and Ni have
been used for some time as a testing ground for the de-
scription of the transition-metal magnetism by band struc-
ture calculations [1–4]. On the one hand, the range of po-
tential impurities from Li to the actinides allows a wide
variation of some important parameters of the investigated
system. On the other hand, the impurity problem is a sim-
ple example for an artificially composed transition-metal
compound. In this sense, it mediates directly to more elab-
orate systems like multilayers, but is usually easier to re-
alize experimentally than, for example, well-defined inter-
faces.

Co and in particular its hexagonal phase — the hexag-
onal (hcp) phase is the stable phase below about 420 ◦C,
but the cubic (fcc) phase can coexist as metastable phase
— have so far received less attention as host matrix
than Fe and Ni, where the impurity hyperfine fields have
been studied experimentally and theoretically for most el-
ements. This has mainly technical reasons: Single-crystal
samples are required to ensure a pure hcp phase and to
determine the anisotropy of the hyperfine interaction. The
impurities must be implanted and the hyperfine interac-
tion must be studied by radiation-based methods. How-
ever, apart from the larger experimental effort, the host
Co(hcp) also offers some new insights.

Due to the hexagonal symmetry, the hyperfine field
depends on the angle between the magnetization and
the c axis. This anisotropy arises from the anisotropy of
the orbital moment and from the noncubic spin distri-
bution [5,6]. The anisotropy of the orbital moment is of
particular interest, since it is directly related to the mag-
netic anisotropy energy and the magnetostriction [7,8],
and since recently several schemes were developed for the
self-consistent treatment of such phenomena within first
principles calculations [9,10].

The spin-orbit-coupling-induced electric field gradient
(spin-orbit EFG) provides a complementary approach to
the study of the orbital part of the magnetism, as shown in
a recent study of that effect in cubic Fe, Co, and Ni [11,12].
The effect probes the modification of the electronic den-
sity by the spin-orbit coupling and should also be present
in hexagonal ferromagnetic hosts. The experimental sep-
aration from the lattice-symmetry-induced electric field
gradient (lattice EFG) requires the measurement of the
EFG for different angles between the magnetization and
the c axis.

Moreover, the hyperfine fields in Co(hcp) and Co(fcc)
typically differ much more than the densities and magne-
tizations of the two Co phases, which are identical within
2%. This allows one to study specifically the influence of
the lattice symmetry on the hyperfine interaction.
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Studies of the magnetic and electric parts of the hyper-
fine interaction in Co(hcp) that also investigate the depen-
dence on the angle between the magnetization and the c
axis are still available only for a few impurities: Such stud-
ies have been performed for Co [6,13,14], Fe [5], Br [15],
Lu [16], Ir [17,18], Pt [19], and Au [20]. In this work we
present data on Hg, Os, and Re and improved data on Pt.
In addition, the nuclear spin-lattice relaxation constants
are given for Re to Au. For the 5d impurities now a fairly
complete study of the systematics of the hyperfine inter-
action in Co(hcp) is possible.

2 Hyperfine interaction in Co(hcp)

2.1 Magnetization behaviour

The external magnetic field Bext was applied either par-
allel to the c axis (0◦ geometry) or perpendicular to the
c axis (90◦ geometry). In the 0◦ geometry the magneti-
zation remains parallel to the c axis, the easy direction
of magnetization. In the 90◦ geometry the magnetization
is rotated towards Bext. The orientation perpendicular to
the c axis is obtained at Bext ≥ Ba, where Ba = 1.35 T is
the anisotropy field.

Due to unavoidable misalignments, the “orientation
angle” α between the magnetic field and the c axis was
in general not exactly 0◦ or 90◦. In the 0◦ geometry the
misalignment could be neglected. However, in the 90◦ ge-
ometry the magnetization behaviour is extremely sensitive
to α, especially around Bext = Ba. Therefore, in that ge-
ometry the actual value of α had to be taken into account.

The angle θ between the magnetization and the c axis
was calculated as a function of Bext and α by finding the
minimum of the free energy F (θ, α, Bext) as a function
of θ. F is given by

F = K1 sin2 θ + K2 sin4 θ − BextM cos(α − θ)
−(1/2)MBdem. (1)

The anisotropy constants K1 = 0.766 J/cm−3 and K2 =
0.105 J/cm−3 and the magnetization M = 0.1442 T were
taken from reference [21]. The same value of M was used
as in reference [21], because in that work rather Ki/M
than Ki was determined.

The last term of equation (1) is the demagnetization
energy. The demagnetization field Bdem, which was of the
order of 0.05 T, is a function of the sample shape and the
distribution of the magnetization in the sample. An exact
treatment of the demagnetization energy would be rather
involved. Therefore, it was treated within the two-domain
model that is described in Appendix A.

2.2 Magnetic hyperfine splitting

The magnetic resonance frequency is given by

νm =
gµN

h
|BHF + (1 + K)(1 − σ)(Bext + Bdem)| . (2)

Here g is the nuclear g factor, µN is the nuclear magne-
ton, K is the Knight shift, σ is the diamagnetic shielding,
and BHF is the hyperfine field, which depends in general
on the orientation of the magnetization. The components
parallel and perpendicular to the c axis, Bz

HF and Bx
HF,

are given by

Bz
HF = (Biso

HF + Bani
HF) cos θ,

Bx
HF = (Biso

HF − 1
2Bani

HF) sin θ, (3)

where Biso
HF and Bani

HF are the isotropic and anisotropic
parts of the hyperfine field, respectively. The shielding of
Bext by Bdem was described within the two-domain model.
The respective expressions for Bext + Bdem are given in
Appendix A.

2.3 Electric hyperfine splitting

The EFG causes a quadrupole splitting of the reso-
nance spectrum into 2I approximately equidistant subres-
onances with subresonance separation ∆νQ. The subreso-
nance between the states with magnetic quantum numbers
m and m + 1 is given by

νm→m+1 = νm − ∆νQ(m + 1
2 ). (4)

The subresonance between the most populated sublevels
m = I and m = (I − 1) is referred to as the ν1 resonance,
the subresonance between m = (I − 1) and m = (I − 2)
as the ν2 resonance, and so on.

The EFG is the sum of two contributions: The lattice
EFG, with principal component V lat

zz , is axially symmet-
ric relative to the c axis and arises from the noncubic
lattice symmetry. The usually considerably smaller spin-
orbit EFG, with principal component V so

z′z′ , is axially sym-
metric relative to the direction of the magnetization and
arises, via the spin-orbit coupling, from the magnetism.
Both contributions can be separated via the anisotropy of
∆νQ:

∆νQ =
3

2I(2I − 1)
eQ

h

(
V lat

zz P2(cos θ) + V so
z′z′

)
. (5)

Here P2 is the Legendre polynomial of second order and
eQ is the nuclear quadrupole moment.

The subresonances are exactly equidistant only for
θ = 0◦ or in the limit ∆νQ/νm → 0. For θ �= 0◦, the
exact subresonance positions were obtained by numerical
diagonalization of the full Hamiltonian of the combined
hyperfine interaction. The quantity ∆νQ is then defined
by equation (5).

As shown in Appendix B, V so
z′z′ depends in the follow-

ing way on the direction of the magnetization:

V so
z′z′(θ) = V

so(0)
z′z′ + V

so(2)
z′z′ P2(cos θ) + V

so(4)
z′z′ P4(cos θ). (6)

Therefore, in principle equation (5) has to be replaced
by an expansion of ∆νQ into a P0, a P2, and a P4 term,
which can be attributed to V

so(0)
z′z′ , V lat

zz +V
so(2)
z′z′ , and V

so(4)
z′z′ ,

respectively.
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However, the data could perfectly be described with-
out anisotropy of the spin-orbit EFG. Moreover, the model
calculations of Appendix B suggest that V

so(4)
z′z′ /V

so(0)
z′z′ and

V
so(2)
z′z′ /V

so(0)
z′z′ are only of the order of 10%. Therefore, the

anisotropy of the spin-orbit EFG was neglected in favour
of a more compact data presentation. This approximation
is unlikely to introduce major errors in the separation of
the lattice and spin-orbit parts of the EFG. However, one
should be aware that the quoted V lat

zz may contain a con-
tribution from V

so(2)
z′z′ , and that a significant V

so(4)
z′z′ can be

excluded only in those cases where the quadrupole split-
ting was determined for more than two substantially dif-
ferent θ’s.

2.4 Interpretation of the measurements

The following five parameters were used to characterize
the hyperfine splitting of a given isotope:

ν‖
m = |gµNBHF(θ = 0◦)/h|, (7)

ν⊥
m = |gµNBHF(θ = 90◦)/h|, (8)

dν/dBext = |gµN/h|sgn(BHF)(1 + K)(1 − σ), (9)

∆ν
‖
Q = ∆νQ(θ = 0◦), (10)

∆ν⊥
Q = ∆νQ(θ = 90◦). (11)

To obtain this parameter set, resonance spectra were mea-
sured in the 0◦ and 90◦ geometries for different magnetic
fields. Each spectrum was interpreted in terms of ν1 and
∆νQ. The hyperfine interaction parameters together with
α in the 90◦ geometry and the demagnetization fields,
B

(0),‖
dem and B

(0),⊥
dem , were then obtained via least squares

fit to this data set.
The problem that θ and ∆ν⊥

Q/∆ν
‖
Q must in general al-

ready be known to deduce the exact value of ∆νQ (as de-
fined by Eq. (5)) from the resonance spectrum, was solved
by an iterative procedure.

An error of the anisotropy constants of 1% was taken
into account. Moreover, some parameters had to be es-
timated, if not enough data were available to determine
all parameters. dν/dBext was estimated assuming K =
0.00(1) and taking σ from reference [22]. |α − 90◦| < 1◦

in the 90◦ geometry and B
(0),⊥
dem = 0.05 ± 0.03 T could

be inferred from several experiments where these param-
eters had been determined for the same setup and similar
sample shapes.

2.5 Nuclear spin-lattice relaxation

The nuclear spin-lattice relaxation rates are quoted in
form of the inverse Korringa constant R = (T1T )−1 or
in form of the “reduced” relaxation constant R/g2, which
is independent of the spin and the magnetic moment of
the investigated isotope. In hexagonal metals R depends
in general on the angle between the quantization axis and

the c axis. Accordingly, R‖ and R⊥, the relaxation con-
stants for parallel and perpendicular orientations of the
magnetization relative to the c axis, can be distinguished.

In ferromagnetic Fe, Co, and Ni, the magnetic field
dependence of the relaxation complicates the situa-
tion [23–25]. Only the high-field limits are commonly com-
pared with the predictions of the ab initio calculations
[26]. Detailed studies of the field dependence of the spin-
lattice relaxations of 198Au [27] and 111In [28] in Co(hcp)
showed that the relaxation at zero field already represents
the high-field limit. This can be understood as a conse-
quence of the rather large anisotropy field of Co(hcp).

3 Experimental details and techniques

The radioactive impurities were produced at the on-line
mass separator ISOLDE at CERN by spallation reactions
of 1 GeV protons on a liquid Pb target. Hg isotopes of the
desired mass were implanted into the Co(hcp) samples us-
ing a voltage of 60 kV. Via the decay of the Hg precursors
suitable radioactive 5d impurities are available from Re
to Hg. The activity was implanted within an area of the
order of 0.15 cm2. The resulting impurity concentrations
were always less than 10−4.

The used Co(hcp) single-crystal disks were about
0.3 mm thick and 1.2 cm in diameter, with the c axis
in the plane and one straight edge perpendicular to the c
axis to facilitate the orientation on the sample holder. The
linewidths of the resonance spectra turned out to depend
crucially on the surface preparation of the Co samples.
The electropolishing of the samples in 85% H3PO4 (about
30 min, U = 1.4 V, graphite cathode, Pt sample holder)
after careful mechanical polishing has proved to give good
results.

After the implantation the samples were mounted into
a 3He-4He dilution refrigerator and cooled down to tem-
peratures in the 10 mK range. The temperature was moni-
tored by a separate 60CoCo(hcp) nuclear orientation ther-
mometer. Particular attention was paid to the orientation
of the c axis with respect to Bext, which was accurate
within 1◦.

The resonance spectra were measured by nuclear mag-
netic resonance on oriented nuclei (NMR-ON) [29]. In this
NMR technique the resonance is detected via changes in
the anisotropic emission of the γ radiation of oriented ra-
dioactive probe nuclei. The γ anisotropy was measured by
four Ge detectors, which were placed at 0◦, 90◦, 180◦, and
270◦ with respect to the magnetic field. The following ra-
tio of the individual count rates was used throughout to
analyse the data:

ε =
W (0◦) + W (180◦)
W (90◦) + W (270◦)

− 1.

If the subresonance structure is hidden by the inho-
mogeneous broadening of the resonance, ∆νQ can be de-
termined by modulated adiabatic fast passage on oriented
nuclei (MAPON): Two rf fields with fixed frequency sep-
aration ∆ν are swept over the resonance in a time that
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is short with respect to the relaxation time. The response
of the γ anisotropy is recorded as a function of ∆ν. This
so called MAPON spectrum is, apart from an offset, pro-
portional to the integral

∫ ∆ν

0
P (∆νQ) d∆νQ of the dis-

tribution P (∆νQ) of the subresonance separation. For
more details on the MAPON technique we refer to ref-
erences [30–32]. The sign of ∆νQ can be deduced from
the characteristic form of the relaxation curve after the
MAPON sweep [31,33].

The nuclear spin-lattice relaxation was measured by
NMR-ON: The frequency modulation (FM) was switched
on and, after some time, switched off again. Due to the
inhomogeneous broadening of the resonance, virtually no
nuclei are excited without FM. R was obtained via least
squares fit to the resulting relaxation curve [25,34].

4 Experimental results

4.1 HgCo(hcp)

About 5×1011 197mHg nuclei (Iπ = 13/2+, T1/2 = 23.8 h)
and a comparable amount of 197Hg nuclei were implanted.
The hyperfine interaction of 197mHg was investigated via
the 133 keV transition in the decay to the ground state.

NMR-ON and MAPON spectra were measured in the
0◦ geometry at zero field and in the 90◦ geometry at Bext

= 2 T. Figure 1 shows the NMR-ON spectra. The large
linewidths of over 1%, which are for M ‖ c about twice
as large as for M ⊥ c, are mainly due to the unresolved
quadrupole splitting. ν̄ − νm, the displacement of the
resonance by the quadrupole splitting, was estimated by
model calculations as −3.5(10) × ∆νQ. If that displace-
ment and the shift of the resonance in the external field
are taken into account, one obtains

ν‖
m = 78.91(50) MHz,

ν⊥
m = 76.29(24) MHz.

The error comes mainly from the estimation of ν̄ − νm.
Figure 2 shows the MAPON spectra. The following

quadrupole splittings were deduced:

∆ν
‖
Q = −0.496(4) MHz,

∆ν⊥
Q = +0.239(5) MHz.

The signs were deduced from the form of the relaxation
curves after the MAPON sweep. The characteristic dif-
ference in the form between sweep up and sweep down is
shown for the 0◦ geometry in Figure 3. The quoted ∆ν⊥

Q
takes into account that the actual subresonance separa-
tions in the 90◦ geometry are all different and deviate
from ∆νQ by up to ±0.007 MHz. The resulting displace-
ment of the MAPON spectrum by the different weighting
of the different subresonance separations was estimated as
+0.005(1) MHz.

Fig. 1. 197mHgCo(hcp): NMR-ON spectra in the 0◦ and
90◦ geometries. Because the relaxation back to thermal equi-
librium was not awaited before applying (every 150 s) the next
frequency, the resonances are displaced along the propagation
directions of the rf frequency (indicated by the open arrows).
The dashed curves are the resonance spectra without relax-
ation effects. The solid arrows mark the positions of νm. T ≈
28 mK in the 0◦ geometry and ≈ 25 mK in the 90◦ geometry.

Fig. 2. 197mHgCo(hcp): MAPON spectra. Top: 0◦ geometry,
Bext = 0 T. Bottom: 90◦ geometry, Bext = 2 T. The carrier
frequency was swept in 4 s from 78.5 MHz to 82.5 MHz in
the 0◦ geometry and from 76.5 MHz to 71.5 MHz in the 90◦

geometry.
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Fig. 3. 197mHgCo(hcp): MAPON relaxation curves for differ-
ent sweep directions. 0◦ geometry, Bext = 0 T, ∆ν = 1 MHz,
sweep between 73.5 MHz and 82.5 MHz in 8 s. Although the re-
laxation curves were somewhat modified by the periodic heat-
ing of the sample during the sweep, the characteristic difference
between sweep up and sweep down is clearly visible.

The MAPON technique also gives information on the
inhomogeneous broadening of P (∆νQ). The half-widths
were ΓQ = 0.077(12) MHz in the 0◦ geometry and ΓQ

= 0.063(10) MHz in the 90◦ geometry. Moreover, in the
0◦ geometry a second, considerably smaller and much
broader component of P (∆νQ) can be distinguished,
which is attributed to probe nuclei with slightly disturbed
surroundings.

4.2 PtCo(hcp)

To study the hyperfine interaction of 191Pt(Iπ = 3/2+,
T1/2 = 2.8 d), about 2 × 1012 A = 191 nuclei were im-
planted. The field dependence of the hyperfine interaction
was investigated in detail: NMR-ON measurements were
performed in the 0◦ geometry between 0.01 and 0.6 T and
in the 90◦ geometry between 0.95 and 2.0 T. Figure 4
shows NMR-ON spectra for the two limiting cases θ = 0◦
and θ ≈ 90◦. Figure 5 shows the evolution of the sub-
resonance structure in the 90◦ geometry from θ ≈ 49◦
at Bext = 0.95 T to θ ≈ 55◦ at Bext = 1.05 T, where
the quadrupole splitting changes the sign and the three
subresonances coincide, to θ ≈ 90◦ for Bext > Ba.

The least squares fit analysis of the data yielded the
following set of parameters:

ν‖
m = 235.21(2) MHz,

ν⊥
m = 232.14(3) MHz,

∆ν
‖
Q = +13.54(2) MHz,

∆ν⊥
Q = −6.83(2) MHz,

dν/dBext = −2.45(4) MHz/T,

α(90◦) = 89.66(5)◦,

B
(0),‖
dem = 0.027(4) T,

B
(0),⊥
dem = 0.035(3) T.

Fig. 4. 191PtCo(hcp): NMR-ON spectra in the 0◦ geometry
at Bext = 0.6 T (top) and in the 90◦ geometry at Bext = 2.0 T
(bottom).

Fig. 5. 191PtCo(hcp): NMR-ON spectra in the 90◦ geometry.

The respective theoretical description is compared with
the experimental hyperfine splitting frequencies in Fig-
ures 6 and 7. The perfect agreement confirms the validity
of the used descriptions of the magnetization behaviour
and the anisotropy of the hyperfine interaction. dν/dBext

agrees with −2.47(4) MHz/T, the shift of the resonance
that is expected for g(191Pt) = 0.329(5) [35] and K = 0.
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Fig. 6. 191PtCo(hcp): Magnetic field dependence of ν1 and
∆νQ in the 0◦ geometry.

Fig. 7. 191PtCo(hcp): Magnetic field dependence of ν1 and
∆νQ in the 90◦ geometry.

The hyperfine interaction of 191PtCo(hcp) had already
been studied in a previous work [19]. However, in that ex-
periment a relatively thick sample was used, less attention
was paid to the orientation of the c axis, and the sur-
face preparation was less perfect. Consequently, the line
widths of the resonances were much larger, ∆ν

‖
Q deviated

by about 1% from the present result, and in the 90◦ geom-

etry the quadrupole splitting deviated even at 2.0 T still
by about 10% from the correct ∆ν⊥

Q . This demonstrates
the importance of the refined surface preparation and of
the control of small deviations from α = 90◦ for the precise
determination of the hyperfine interaction.

4.3 IrCo(hcp)

The hyperfine interactions of several Ir isotopes in Co(hcp)
were studied in references [17,18]. Since the emphasis
in that work was on the EFG and the quadrupole mo-
ments, the magnetic hyperfine splitting frequencies were
not given. This is done now in Table 1 for those isotopes
where both ν

‖
m and ν⊥

m were determined. The reproducibil-
ity of the results is demonstrated by the good agreement
of all ν⊥

m/ν
‖
m’s.

The magnetic hyperfine splitting frequencies also pro-
vide information on the hyperfine anomaly (HFA). The
HFA 1∆2 between the isotopes “1” and “2” is defined by

(ν(1)
m /ν(2)

m ) = (g(1)/g(2))(1 + 1∆2), (12)

where ν
(1)
m , ν

(2)
m , g(1), and g(2) are the magnetic hyper-

fine splitting frequencies and g factors of the respective
isotopes. A large HFA is expected between 189Ir on the
one hand and 184Ir, 186Ir, and 188Ir on the other hand.
According to the Moskowitz-Lombardi rule [38], it can be
estimated to be 189∆184,186,188

c = +0.089(15) for a pure
contact field.

The HFA in Co(hcp), 189∆186
Co(hcp), cannot be deter-

mined directly, since no independent information on the g
factors of the respective Ir isotopes is available. However,
the HFA’s in Co(hcp) and Fe can be compared with high
precision. From the data of Table 1 we deduce

189∆186
Co(hcp) − 189∆186

Fe = −0.0011(8).

Consistent, but less precise information on the HFA has
already been obtained by Mössbauer effect studies on 193Ir
in Co(hcp) [39].

4.4 OsCo(hcp)

The experiment on 183Os (Iπ = 9/2+, T1/2 = 13 h) was
limited by the comparatively short half-life and the small
activity of the sample: Since the Hg yields at ISOLDE de-
cline rapidly with decreasing mass number for A < 185,
only about 4×1010 A = 183 nuclei could be collected dur-
ing 8 h of implantation. Therefore, only two measure-
ments of the complete subresonance structure could be
performed, at Bext = 1.5 T in the 90◦ geometry and at
Bext = 0 T in the 0◦ geometry. In addition, in the 90◦
geometry the ν1 resonance was measured at Bext = 1.4 T
and 1.7 T. The resonance spectra are shown in Figure 8.

The presence of a large spin-orbit EFG reveals itself in
a large deviation of ∆ν⊥

Q/∆ν
‖
Q from −1/2: The quadrupole

splitting in the 90◦ geometry is rather a factor of 2 larger
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Table 1. Magnetic hyperfine splitting frequencies of several Ir isotopes in Co(hcp) and in Fe for M‖[100] (ν
[100]
m,Fe from refer-

ences [36] and [37]).

Isotope ν
‖
m (MHz) ν⊥

m (MHz) ν⊥
m/ν

‖
m ν

[100]
m,Fe (MHz) ν

‖
m/ν

[100]
m,Fe

184Ir 108.13(13) 108.22(9) 1.0008(15)
186Ir 598.07(8) 598.20(17) 1.0002(3) 794.68(20) 0.7526(2)
188Ir 238.07(1) 238.11(5) 1.0002(2) 316.25(14) 0.7528(3)
189Ir 77.07(5) 77.11(17) 1.0005(23) 102.512(17) 0.7518(5)

Fig. 8. 183OsCo(hcp): NMR-ON spectra in the 0◦ and 90◦

geometries.

instead of being a factor of 2 smaller than the quadrupole
splitting in the 0◦ geometry. The least squares fit yielded
α > 89.5◦ and

ν‖
m = 103.82(6)MHz,

ν⊥
m = 101.53(12)MHz,

∆ν
‖
Q = −0.984(18)MHz,

∆ν⊥
Q = +2.246(42)MHz.

4.5 ReCo(hcp)

The sample of the 183OsCo(hcp) experiment was used af-
ter the decay of 183Os to 183Re (Iπ = 5/2+, T1/2 = 71 d)
to investigate the hyperfine interaction of ReCo(hcp). The

Fig. 9. 183ReCo(hcp): NMR-ON spectra in the 0◦ and 90◦ ge-
ometries. The open arrows at Bext = 1.35 T and 1.3 T mark
the expected positions of the ν1 and ν2 resonances.

ν1 and ν2 resonances were measured in the 0◦ geome-
try at zero field and in the 90◦ geometry at six different
fields between 1.3 and 2 T. Figure 9 shows the resonance
spectra.
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Table 2. Relaxation constants in Co(hcp).

Isotope R‖ [(sK)−1] R⊥ [(sK)−1]

198Au 1.02(5)a 0.74(5)a

191Pt 0.43(5)b 0.72(5)b

188Ir 0.93(26)
183Os 1.73(24)
183Re 5.2(9)

a Ref. [27].
b Unpublished.

In the 90◦ geometry completely irregular resonance
structures were observed at 1.35 T and 1.3 T. Moreover,
at 1.4 T the amplitude ratio I1/I2 of the ν1 and ν2 reso-
nances already conspicuously deviated from the expected
value of about 2. The origin of those distortions of the res-
onance structure remains unclear: A distinct increase in
the linewidth between 1.5 T and 1.3 T was found in many
of our NMR-ON experiments on Co(hcp). Figure 5 illus-
trates this trend for 191PtCo(hcp). It can be attributed to
the extreme sensitivity of the magnetization behaviour in
this field region to α and other parameters, which are not
completely uniform over the sample. However, the spectra
had never become as irregular as observed in this experi-
ment.

Using in the 90◦ geometry only the data for Bext ≥
1.5 T, the least squares fit yielded α > 89.5◦ and

ν‖
m = 429.07(5) MHz,

ν⊥
m = 417.45(35) MHz,

∆ν
‖
Q = −10.05(4) MHz,

∆ν⊥
Q = +4.92(7) MHz.

The relative linewidth of the resonance in the 0◦ geome-
try, Γ/νm = 1.2(1)×10−3, can be compared with Γ/νm =
3.1(6)×10−3 for 183Os at the same lattice sites. This re-
veals a strong element dependence of the inhomogeneous
broadening of the hyperfine field.

4.6 Nuclear spin-lattice relaxation

In the course of the 183OsCo(hcp) and 183ReCo(hcp) ex-
periments and an unpublished 188IrCo(hcp) experiment,
the nuclear spin-lattice relaxations in the 0◦ geometry
were also measured. The relaxation of 188Ir was measured
at 1.0 T to avoid any cross relaxation to the 59Co reso-
nance [40], which is at zero field very close to the ν2 res-
onance of 188Ir. The other measurements were performed
at zero field. To ensure a sufficient rf power level per fre-
quency unit, only the ν1 resonance was excited for 188Ir
and 183Re, and only the ν2 resonance for 183Os.

Figure 10 shows the relaxation curves. The deduced
relaxation constants are listed in Table 2. Dedicated ex-
periments on the nuclear spin-lattice relaxation were per-

Fig. 10. NMR-ON relaxation curves of 188Ir, 183Os, and 183Re
in the 0◦ geometry. T = 17.5(5) mK (top), 14.4(3) mK (mid-
dle), and 27(1) mK (bottom).

formed for 198AuCo(hcp) and 191PtCo(hcp). In particu-
lar, the magnetic field dependence of the relaxation was
studied. The details will be published elsewhere. Here we
give only the high-field limits of the relaxation constants,
which are also listed in Table 2.

5 Discussion

Table 3 compiles the available data on the hyper-
fine interaction of the 5d impurities in Co(hcp). Apart
from the already quoted g(191Pt), use was made of the
following nuclear moments: g(197mHg) = 0.158 [22],
g(188Ir) = 0.306(3), g(183Os) = 0.180(4) [11], g(183Re) =
1.267(6) [44], Q(197mHg) = +1.24(14) b [22], Q(191Pt) =
−0.87(4) b [35], Q(183Os) = +3.12(27) b [45], and
Q(183Re) = +2.1(2) b [45]. g(188Ir) was derived from
dν/dBext = −2.30(1) MHz/T for 188IrCo(hcp), assum-
ing K = 0.00(1). This is at present at least as reliable
as the derivation via hyperfine splitting frequencies and
estimates of the hyperfine anomaly.

The EFG of HgCo(hcp) turned out to be by about a
factor of 2 smaller than reported in reference [46]. The
origin of this discrepancy is not clear.

5.1 Isotropic part of the hyperfine field

Figure 11 shows the hyperfine fields of the 5d impurities in
Co(hcp) together with the hyperfine fields in Fe, Co(fcc),
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Table 3. Hyperfine interaction of the 5d impurities in Co(hcp). Bfcc
HF is the hyperfine field in Co(fcc).

Biso
HF Bani

HF V lat
zz V so

z′z′ R‖/g2 R⊥/g2 Biso
HF − Bfcc

HF

Impurity (T) (T) (1016 V/cm2) (1016 V/cm2) [(sK)−1] [(sK)−1] (T)

Hg −64.02(19) −1.45(31) −8.5(10) −0.10(7)

Au −85.65(6)a −1.387(11)a −9.8(3)a −0.016(18)a 11.6(6) 8.4(6) −14.1(4)b

Pt −93.0(14) −0.818(16) −12.9(6) +0.035(12) 4.0(5) 6.7(5) −12.06(18)c

Ir −102.1(10) +0.013(15) −17.9(2)d −3.79(5)d 9.9(28) −7.95(9)c

Os −74.6(17) −1.12(7) −6.9(6) +3.72(33) 53(8) +12.0(3)c

Re −43.63(21) −0.802(25) −13.1(12) −0.09(7) 3.2(6) +4.82(6)c

Ta −40.7(6)e (−)12.3(4)e −4.39(6)e

Lu −49.59(28)f −1.52(11)f −17.4(3)f +0.28(24)f

a Ref. [20].
b νfcc

m (197Au) taken from Ref. [41], corrected for 197∆198.
c νfcc

m taken from Ref. [33].
d Ref. [17].
e Refs. [42] and [43], only B

‖
HF and V

‖
zz determined.

f Ref. [16].

and Ni. The hyperfine fields were divided by the spin mo-
ment µs of the host to reveal those differences in the sys-
tematics that go beyond a linear scaling of the hyperfine
field with the magnetic moment of the host.

The trend of the 5d hyperfine fields in Co(hcp) is rather
similar to the trend in cubic Fe, Co, or Ni. Essentially the
same trend has also been observed for the 4d impurities [1].
It has been reproduced by ab initio calculations and is well
understood [3,49,50].

The hyperfine fields in Co also provide a more complete
experimental picture of the differences in the systematics
between the various hosts. It turns out that there are no
clear trends in the sequences Fe, Co, Ni or bcc, hcp, fcc. A
theoretical treatment of the differences in the systematics
is not available: The hyperfine fields of the 5d impurities
have been calculated only for Fe and the results deviated
distinctly from the data [49].

Figure 11 demonstrates that it is not justified to
neglect the differences between the hyperfine fields in
Co(hcp) and Co(fcc): The fields in the two Co phases dif-
fer by the same order of magnitude as the fields in Fe,
Co, and Ni after the removal of the scaling with the host
moment. This shows that the influence of the lattice sym-
metry and the detailed form of the band structure is re-
markably large and that this influence can well be studied
via the comparison of the hyperfine fields in Co(hcp) and
Co(fcc).

5.2 Orbital hyperfine field

Since the HFA is an effect of the Fermi-contact interaction,
it gives information on the magnitude of the noncontact
part of BHF. F nc, the fractional contribution of the non-
contact field to the total hyperfine field of isotope “2”, is

Fig. 11. Systematics of the hyperfine fields of the 5d impurities
in Fe, Co(hcp) (isotropic part), Co(fcc), and Ni. The fields were
divided by µs = 2.13, 1.58, and 0.56 µB for Fe, Co, and Ni,
respectively [47,48].

given by

F nc = 1 −
1∆2

1∆2
c

, (13)

where 1∆2
c is the HFA for a pure contact field. In this way

the orbital hyperfine field, which is a direct measure of the
local orbital moment, can be determined, since the non-
contact part of BHF is practically identical to the orbital
part.

Unfortunately, the determination of F nc requires the
presence of a large anomaly and a reference system for
which both the anomaly and F nc are known. Therefore,
the orbital fields have been investigated only for Au and
Ir. For Au, F nc

Fe = −0.135(3) [51], F nc
Co(hcp) = −0.073(12)

[20], and F nc
Ni = −0.145(21) [51] were determined, which

corresponds to a noncontact field of Bnc
HF = +6.3(10) T in

the case of AuCo(hcp).
For Ir, at least the variation of F nc with the host is now

also known. From the comparison of the respective HFA’s,
F nc

Co(hcp) − F nc
Fe = +0.012(9) (this work) and F nc

Ni − F nc
Fe =

−0.053(15) [52] can be derived. The comparison with the
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data on Au shows that distinct differences between the
systematics of the orbital and total hyperfine fields become
apparent, if precise data on the HFA are available.

Using F nc
Fe = −0.11(6) [39], Bnc

HF = +10(6) T would be
derived for IrCo(hcp). However, this value is somewhat
ambiguous, since it relies on an estimate of the orbital
field of IrF6 [39]. Moreover, the positive sign is in con-
tradiction to circular magnetic X-ray dicroism (CMXD)
measurements of the local orbital moment [53].

Precise data on the HFA’s of Au and Ir in Co(fcc)
would be of particular interest: The comparison with the
HFA’s in Co(hcp) would reveal to which extent the orbital
moment is responsible for the different hyperfine fields in
Co(fcc) and Co(hcp).

5.3 Anisotropic part of the hyperfine field

The anisotropy of the hyperfine field provides another pos-
sibility to study the orbital part of the hyperfine field.
Bani

HF arises almost exclusively from the anisotropy of the
orbital hyperfine field and from the spin-dipole field [5,54].
In contrast, the dominant contribution to Biso

HF, the Fermi-
contact interaction, is, as the spin moment and most fea-
tures of the band structure, essentially independent of the
direction of the magnetization.

The order of magnitude of the two contributions to
Bani

HF can be estimated in the following way: According
to ab initio calculations [49] and the HFA’s, the orbital
hyperfine field is of the order of 10 T. According to the
model calculations of Appendix B, the anisotropy of the
orbital moment is of the order of 10%. Thus, the orbital
contribution to Bani

HF is expected to be of the order of 1 T.
The spin-dipole field contributes only to Bani

HF. (At
least, if the spin-orbit-induced spin-dipole field is ne-
glected.) The respective contribution, Bdip, is closely re-
lated to V lat

zz , since V lat
zz arises from the sum of the lo-

cal noncubic electron distributions of the spin-up (↑) and
spin-down (↓) bands, whereas Bdip arises from the respec-
tive difference. (The information on V lat

zz will thus also
help to separate the orbital and spin-dipole contributions
to Bani

HF.) If only the ↑ or only the ↓ band would be relevant,
the typical EFG strength, V lat

zz = −12×1016 V/cm2, would
correspond to Bdip = +0.8 T or −0.8 T, respectively.

Figure 12 shows Bani
HF as a function of the impurity.

Bani
HF is of the expected order of magnitude. The negative

sign of Bani
HF for almost all 5d impurities is remarkable,

since both the local spin and the local orbital moments
change the sign within the 5d series [12]. In contrast, Bani

HF
is positive for Co in Co(hcp) [6].

5.4 Lattice EFG

The upper part of Figure 13 shows V lat
zz as a function of the

impurity. The EFG’s of transition-metal impurities in a
certain noncubic transition-metal host usually have all the
same sign and the systematics is rather smooth [55,56].
Figure 13 shows that this is also true for the EFG’s in
Co(hcp). However, the EFG’s are distinctly smaller than

Fig. 12. Anisotropic part of the hyperfine field of the 5d im-
purities in Co(hcp).

Fig. 13. EFG of the 5d impurities in Co(hcp). Top: Lattice
EFG, the dashed line shows the spin-orbit EFG on the same
scale. Bottom: Spin-orbit EFG, the dashed line shows the spin-
orbit EFG in Co(fcc) [33].

in other noncubic hosts, because the c/a = 1.622 ratio
of Co(hcp) is rather close to the ideal ratio c/a = 1.633.
The jump between Os and Ir, which is also found in Bani

HF,
might be connected to the sign change of the local spin
moment, which is expected around Os.

5.5 Spin-orbit EFG

The lower part of Figure 13 shows V so
z′z′ as a function of

the impurity. V so
z′z′ is a measure of the spin-orbit-induced

deformation of the electron distribution. Positive V so
z′z′ ’s
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Fig. 14. Reduced nuclear spin-lattice relaxation constants in
Co(hcp) and Fe. Fe data from reference [26].

correspond to oblate deformations with respect to the di-
rection of the magnetization, negative V so

z′z′ ’s to prolate
deformations. The spin-orbit EFG’s can be compared to
the spin-orbit EFG’s of the 5d impurities in cubic Fe, Co,
and Ni, which have recently been studied in detail ex-
perimentally and theoretically [11,12]. As shown in Ap-
pendix B, there should be no fundamental difference apart
from the form of the anisotropy.

Large variations of V so
z′z′ from one impurity to the next,

for example, are also observed in the cubic hosts. They
result from the relatively large sensitivity of the effect to
band structure details. That sensitivity can also be made
responsible for the clearly different spin-orbit EFG’s in
Co(hcp) and Co(fcc), which are both shown in Figure 13.
The spin-orbit EFG’s of Ir and Os in Co(hcp) are of com-
parable magnitude as the largest EFG in the cubic hosts,
V so

z′z′(IrFe) = −4.0 × 1016 V/cm2 for M‖[100]. They are
thus large, but still within the expected order of magni-
tude.

However, the strict division of the spin-orbit EFG’s
in relatively large and very small ones is unexpected and
also not observed in the cubic hosts. Very small spin-orbit
EFG’s are expected to occur accidentally in connection
with the many sign changes in the systematics, but not
in such a regular manner. This implies a rather complete
suppression of the spin-orbit EFG for most, but not for all
impurities, which would be at variance with the present
understanding of the interplay between the band structure
and the spin-orbit coupling.

5.6 Nuclear spin-lattice relaxation

The spin-lattice relaxations can be compared with the
spin-lattice relaxations in Fe, which have been studied ex-
perimentally and theoretically [26,57]. Figure 14 shows the
systematics of the spin-lattice relaxation of the 5d impu-
rities in Co(hcp) and Fe. The magnitude of the relaxation
tends to be smaller than in Fe. It may thus also be in
better agreement with the theory than in Fe, where the

relaxation rates are by about a factor of 3 larger than
predicted by the ab initio calculations [26].

The variation of the relaxation rate as a function of
the impurity is conspicuously large and distinctly larger
than in Fe. The comparison with Fe also reveals a large
variation as a function of the host. Large variations in
the systematics are, however, not surprising, since the nu-
clear spin-lattice relaxation in metals is proportional to
the square of the density of states at the Fermi energy
and the density of states varies rather strongly in realistic
transition-metal band structures.

The anisotropy of the relaxation can be compared
with band structure calculations for hexagonal transition
metals, which predict anisotropies between 3% and 30%
[58]. The observed differences between R‖ and R⊥ for
AuCo(hcp) and PtCo(hcp) are thus relatively large.

For several 5d isotopes with small magnetic and large
quadrupole moments, there might be an appreciable elec-
tric quadrupolar contribution to the relaxation. In this
case the normalization of R to g2 becomes inappropri-
ate. Therefore, calculations should include the quadrupo-
lar contribution and should directly be compared with the
data of Table 2.

Rq, the electric quadrupolar contribution to R, can be
estimated relative to Ro, the orbital contribution to R,
by equation (26) of reference [58]. For 198Au, 191Pt, 188Ir,
183Os, and 183Re one obtains Rq/Ro ≥ 0.4, 1.2, 1.6, 3.0,
and 0.1, respectively. Thus, the peak in the systematics at
Os may in part be due to Rq. However, the actual impor-
tance of Ro is not known: According to the ab initio calcu-
lations, it is the dominating contribution to the magnetic
relaxation [57]. But for IrFe, Ro turned out to contribute
less than a third of the total magnetic relaxation [37].

6 Conclusions

Precise data on the hyperfine interaction of the 5d impu-
rities from Re to Hg in Co(hcp) are now available. These
data complete the systematics of the hyperfine interaction
of these impurities in Fe, Co, and Ni. The new data are in
particular of interest in the context of spin-orbit effects in
magnetic transition metals: The effect of the strong spin-
orbit coupling at the 5d impurities can be studied via the
anisotropy of the hyperfine field, the spin-orbit EFG, and
the hyperfine anomaly. The systematics of the spin-orbit
EFG in Co(hcp), which is at present even qualitatively
not understood, demonstrates that our understanding of
the spin-orbit effects is still far from complete.

So far only the hyperfine fields of pure Co(fcc) and
Co(hcp) have been investigated by ab initio calculations
that also take the spin-orbit coupling into account [54].
These calculations should be extended to the 5d impurities
and to the electric hyperfine interaction.

We wish to thank Prof. H.-J. Körner for the continuous support
of this work and E. Smolic for experimental help.



460 The European Physical Journal B

Appendix A: Two-domain model

The two-domain model assumes an arbitrarily fine and
homogeneous division of the disk-shaped sample into two
sorts of domains with different orientations of the magneti-
zation. The c axis lies within the disk plane. The domain
boundaries are arranged in such a way that the diver-
gence of the magnetization vanishes within the sample.
The demagnetization field is assumed to be uniform over
the sample. The magnetization behaviour can then be de-
scribed by the three variables θ1 and θ2, which are defined
in Figure 15 as the angles between the magnetization and
the c axis for the two sorts of domains, and the fraction
f1 of the sample volume that is occupied by one of the
two sorts. For given α and Bext, the three variables must
minimize the free energy F (θ1, θ2, f1).

Since the used samples were not rotation ellipsoids,
the assumed homogeneities of the demagnetization field,
the magnetization, and the division of the sample into
domains can only be an approximation. It has to be made
to keep the number of variables manageable. This first
approximation should be sufficient, if the demagnetization
effects are small and the effective demagnetization factors
are determined via least squares fit to the data.

The components of Bdem parallel and perpendicular
to the c axis are assumed to be given by

Bz
dem = −B

(0),‖
dem (〈M〉z/M),

Bx
dem = −B

(0),⊥
dem (〈M〉x/M).

Here 〈M〉 is the average magnetization of the sample and
B

(0),‖
dem and B

(0),⊥
dem are the demagnetization fields for com-

plete magnetization of the sample parallel and perpendic-
ular to the c axis, respectively.

If the two-domain model is applied to equation (1),
one obtains the following expression for the free energy:

F = f1

[
K1 sin2 θ1 + K2 sin4 θ1

]
+(1 − f1)

[
K1 sin2 θ2 + K2 sin4 θ2

]
−BextM [f1 cos(α − θ1) − (1 − f1) cos(α + θ2)]

+(1/2)B(0),‖
dem M [f1 cos θ1 − (1 − f1) cos θ2]

2

+(1/2)B(0),⊥
dem M [f1 sin θ1 + (1 − f1) sin θ2]

2
. (14)

The numerical minimization of this expression as a func-
tion of the three variables is rather inconvenient. Fortu-
nately, it turns out that the solution of this minimization
problem always satisfies θ1 = θ2. Furthermore, F can be
minimized analytically with respect to f1. The result is

f1 = (1/2)

(
1 +

Bext cosα

B
(0),‖
dem cos θ

)
(15)

as long as (“two-domain regime”)

Bext cosα ≤ B
(0),‖
dem cos θ, (16)

and f1 =1 for larger magnetic fields (“one-domain
regime”).
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Fig. 15. Two-domain model. Left: Sketch of the division of
the sample into two sorts of domains. Right: Definition of the
angles α, θ1, and θ2.

If these results are inserted into equation (14), the
problem reduces to minimize

F = K1 sin2 θ + K2 sin4 θ − BextM sin α sin θ

+(1/2)B(0),⊥
dem M sin2 θ

−(1/2)(Bext cosα)2M/B
(0),‖
dem (17)

in the two-domain regime and

F = K1 sin2 θ + K2 sin4 θ

−BextM(sin α sin θ + cosα cos θ)

+(1/2)(B(0),⊥
dem − B

(0),‖
dem )M sin2 θ

+(1/2)B(0),‖
dem M (18)

in the one-domain regime as a function of one variable,
θ = θ1 = θ2.

The components of the shielded external field parallel
and perpendicular to the c axis are given by

(Bext + Bdem)z = max
[
0, (Bext cosα − B

(0),‖
dem cos θ)

]
(Bext + Bdem)x = Bext sin α − B

(0),⊥
dem sin θ. (19)

The consequences of equations (16, 17, 18), and (19)
for the magnetization behaviour can shortly be described
in the following way: In both types of domains the magne-
tization is rotated by the same angle towards the external
field. If α �= 90◦, one domain type is favoured. It grows at
the expense of the other type in such a way that the com-
ponent of Bext parallel to the c axis is completely shielded
by Bdem. In the two-domain regime the magnetization is
rotated towards Bext as if only the component of Bext per-
pendicular to the c axis would be acting on an arbitrarily
thin sample with effective anisotropy field Ba + B

(0),⊥
dem .

At a certain field strength, which is given by equa-
tion (16), only one domain is left. In the one-domain
regime the only effect of the finite sample thickness is that
the effective anisotropy field is Ba + (B(0),⊥

dem − B
(0),‖
dem ).

The consequences of the finite sample thickness for the
hyperfine splitting are that θ depends in a more compli-
cated way on Bext and α and that Bext is partly shielded
by Bdem. However, there is no difference between the hy-
perfine splittings in the two sorts of domains.
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Appendix B: Spin-orbit effects in hexagonal
ferromagnets

In reference [12] the relationships between the orbital mo-
ment, the spin-orbit EFG, and the band structure were
analysed for cubic ferromagnets within a tight-binding
scheme. We extend here the scheme to hexagonal ferro-
magnets. The emphasis is on the peculiarities connected
with the hexagonal lattice symmetry.

Using the notation of reference [12], the orbital
moment can be expressed as a function of the ρs

i (e)’s, the
partial densities of states of the system without spin-orbit
coupling, and ξ, the spin-orbit coupling strength, in the
following way:

〈lz′〉 = ξ

∫ eF ∑
st

∑
ij

bstcijΩ
st
ij (e) de, (20)

Ωst
ij (e) = −(1/π)Im

[
Gs

i (e)G
t
j(e)

]
, (21)

Gs
i (e) = P

[∫
ρs

i (e
′)

(e − e′)
de′

]
− iπρs

i (e). (22)

The spin-orbit-induced noncubic charge distribution,
which is directly proportional to the spin-orbit EFG, can
be expressed by

〈l2z′ − l(l+1)
3 〉 = ξ2

∫ eF ∑
stu

∑
ijk

bstucijkΩstu
ijk (e) de

+ ξ2

∫ eF ∑
stu

∑
ijk

b̃stuc̃ijkΩstu
ijk (e) de, (23)

Ωstu
ijk (e) = −(1/π)Im

[
Gs

i (e)G
t
j(e)G

u
k(e)

]
. (24)

Here, z′ denotes the components along the direction of the
magnetization, the superscripts s, t, and u denote the spin
direction of the orbitals, the subscripts i, j, and k denote
the symmetry of the orbitals, and eF is the Fermi energy.

According to the hexagonal lattice symmetry, the fol-
lowing six, in general different partial densities of states
have to be considered: ρ↑E2

, ρ↑E1
, ρ↑A1

, ρ↓E2
, ρ↓E1

, and ρ↓A1
.

E2 denotes the x2 − y2 and xy orbitals, E1 the xz and yz
orbitals, and A1 the 3z2 − 1 orbital. z is the direction of
the c axis. The Gs

i (e)’s are the respective diagonal matrix
elements of the unperturbed Green’s function. Their real
and imaginary parts are related to the partial densities of
states by equation (22).

b, b̃, c, and c̃ are coefficients that describe to which
extent which orbitals contribute to the respective spin-
orbit effect. The nonvanishing b and c coefficients for the
orbital moment are

b↑↑ = 1, b↓↓ = −1, (25)

cE2E2 = 4 cos2 θ, cE1E1 = cos2 θ,

cE2E1 = 2 sin2 θ, cE1A1 = 3 sin2 θ. (26)

The b, c, b̃, and c̃ coefficients for the spin-orbit-induced
noncubic charge distribution are

b↑↑↑ = 1, b↑↓↑ = −1,

b↓↑↓ = −1, b↓↓↓ = 1, (27)

Fig. 16. Orbital moment (top) and spin-orbit-induced non-
cubic charge distribution (bottom) of Co(hcp) as a function
of the Fermi energy. Expressed in units of ξ/W , where W =
4.7 eV is the bandwidth.

cE2E2E2 = (4/21) + (2/21)P2 + (48/35)P4,

cE2E2E1 = (8/7) + (4/7)P2 − (48/35)P4,

cE2E1E2 = −(1/21)− (11/21)P2 − (12/35)P4,

cE2E1E1 = (4/7) + (2/7)P2 − (24/35)P4,

cE1E2E1 = (1/42) + (11/42)P2 + (6/35)P4,

cE2E1A1 = (5/7)− (8/7)P2 + (12/35)P4,

cE1E1E1 = −(1/42)− (1/84)P2 − (6/35)P4,

cE1E1A1 = (2/7) + (1/7)P2 − (12/35)P4,

cE1A1E1 = (4/7)− (13/28)P2 + (18/35)P4,

cA1E1A1 = (1/14) + (11/14)P2 + (18/35)P4, (28)

b̃↑↑↑ = 1, b̃↑↓↑ = 1,

b̃↓↑↓ = 1, b̃↓↓↓ = 1, (29)

c̃E2E2E2 = +2P2, c̃E2E1E2 = +1P2,

c̃E1E2E1 = −1/2P2, c̃E1E1E1 = −1/4P2,

c̃E1A1E1 = −3/4P2, c̃A1E1A1 = −3/2P2. (30)

Here, P2 and P4 are abbreviations for P2(cos θ) and
P4(cos θ), respectively.

To go beyond this formal analysis, equation (20) and
the first term on the right hand side of equation (23) were
evaluated for the partial densities of states of Co(hcp)
from reference [59]. Figure 16 shows the calculated orbital
moments for θ = 0◦ and θ = 90◦ as well as V

so(0)
z′z′ , V

so(2)
z′z′ ,
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and V
so(4)
z′z′ as a function of the Fermi energy. The band

structure of Co(hcp) serves here as a realistic example
for the partial densities of states of a hexagonal system
with c/a close to 1.633. The variation with eF serves to
illustrate the typical range of values that can be expected.

From equations (20–30) and the model calculation the
following conclusions can be drawn: (i) Equation (20) and
the first term of equation (23) are almost identical to the
equations for the orbital moment and the spin-orbit EFG
in cubic ferromagnets. Only the c coefficients differ, since
the E2, E1, and A1 orbitals have to be distinguished in-
stead of the eg and t2g orbitals. Therefore, apart from the
anisotropy, there should be no fundamental difference be-
tween the orbital moments and spin-orbit EFG’s in cubic
and hexagonal ferromagnets.

(ii) The second term of equation (23), which is de-
scribed by the b̃ and c̃ coefficients, can be interpreted as
a spin-orbit contribution to the lattice EFG, because it
arises from the noncubic lattice symmetry and not from
the magnetism of the system: It is absent in cubic fer-
romagnets and vanishes for a spherical electron distri-
bution (ρE2 = ρE1 = ρA1). It shows a P2 dependence
as the z′z′ component of the lattice EFG. It is not re-
stricted to magnetic systems, since the contributions from
the different spin directions are summed up in the form
↑↑↑ + ↑↓↑ + ↓↑↓ + ↓↓↓. The term should be of the same
order of magnitude as the spin-orbit EFG, but should be
only a minor contribution to the lattice EFG.

(iii) The orbital moment is anisotropic already in first-
order perturbation theory, whereas it is isotropic in the
cubic lattice symmetry. The anisotropy is typically of the
order of 10% and can be described by a P2(cos θ) term.

(iv) As in the cubic lattice symmetry, the spin-orbit
EFG is anisotropic already in the lowest-nonvanishing-
order perturbation theory. The anisotropy can be de-
scribed by a P2(cos θ) and a P4(cos θ) term. In princi-
ple, V

so(2)
z′z′ /V

so(0)
z′z′ and V

so(4)
z′z′ /V

so(0)
z′z′ can adopt any value.

Typically, however, they are of the order of 10%. The
anisotropy of the spin-orbit EFG is thus distinctly smaller
than in the cubic lattice symmetry.
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